Pengertian dan Perhitungan Korelasi Pearson Product Moment

Dalam penelitian tertentu, terkadang kita perlu mengetahui bagaimana hubungan antara objek yang kita amati dengan objek yang lainnya. Untuk mengetahui hubungan tersebut, dapat dilakukan analisis korelasi. Dalam postingan saya kali ini, saya akan membahas mengenai pengertian, cara, dan analisis perhitungan korelasi. Bagian kali ini yang akan saya bahas yaitu mengenai analisis korelasi linear sederhana atau biasa disebut dengan simple linear correlation atau Pearson product moment correlation.

Pada umumnya, korelasi berasal dari dua kata, yaitu "Co-" dan "Relation". Kata "Co-" menunjukkan bersama, bergabung, sepasang, atau derajat/tingkat yang sama. Dan "relation" menunjukkan relasi, dampak atau hubungan. Jadi secara umum, definisi korelasi menurut penggunaan statistika merupakan metode untuk mengetahui hubungan antara faktor-faktor atau variabel-variabel yang diamati. Penggunaan korelasi sering sekali dikenal sebagai metode untuk melihat adanya kekuatan, bentuk arah, dan besarnya hubungan antar variabel, serta mengetahui erat atau tidaknya hubungan antar variabel. Dalam matematika, korelasi disimbolkan dengan ρ (rho) sebagai populasi atau r sebagai sampel.

Metode yang paling dasar digunakan untuk mengetahui hubungan antar variabel yaitu korelasi linear sederhana atau korelasi Pearson product moment. Korelasi linear sederhana merupakan metode korelasi yang digunakan untuk mengukur arah dan kekuatan hubungan 2 variabel. Rumus umum korelasi linear sederhana atau korelasi pearson product moment didefinisikan sebagai berikut:



dengan n merupakan banyaknya sampel atau observasi pada data, dan merupakan jumlah nilai dari faktor/variabel X dan Y dari observasi/sampel ke-1 hingga ke-n.

Koefisien korelasi berada diantara -1 hingga 1. Koefisien korelasi menandakan arah serta kekuatan hubungan antar variabel. Arah korelasi antar variabel ditunjukkan dari tanda pada hasil koefisien korelasi. Apabila koefisien korelasi bertanda positif (+), maka:
-Apabila nilai variabel ditingkatkan, maka akan meningkatkan nilai variabel yang lain
-Apabila nilai variabel diturunkan, maka akan menurunkan nilai variabel yang lain

Apabila koefisien korelasi bertanda negatif (-), maka:
-Apabila nilai variabel ditingkatkan, maka akan menurunkan nilai variabel yang lain
-Apabila nilai variabel diturunkan, maka akan meningkatkan nilai variabel yang lain

Koefisien korelasi bertanda positif (+) menunjukkan arah hubungan yang searah, sementara koefisien korelasi bertanda negatif (-) menunjukkan arah hubungan yang berlawanan. Selain itu kekuatan korelasi antara variabel ditunjukkan dari rentang nilai pada hasil koefisien korelasi, baik positif maupun negatif. Berikut ini merupakan kekuatan korelasi antar variabel dari selang-selang tertentu menurut Walpole (2004):

No Selang Koefisien Korelasi Kekuatan Hubungan
1 0.0 ≤ r < 0.2 Sangat Lemah
Tidak ada hubungan (|r| = 0)
2 0.2 ≤ r < 0.4 Lemah
3 0.4 ≤ r < 0.6 Sedang/Biasa
4 0.6 ≤ r < 0.8 Kuat
5 0.8 ≤ r < 1.0 Sangat Kuat
Sempurna (|r| = 1)

Dalam scatter plot, arah dan kekuatan hubungan antar variabel dapat digambarkan sebagai berikut:
Arah dan Kekuatan Korelasi Berdasarkan Scatter Plot
Gambaran umum arah dan kekuatan korelasi berdasarkan Scatter Plot
Berdasarkan hasil diatas menunjukkan arah korelasi (kiri) dan kekuatan korelasi (kanan) berdasarkan scatter plot (plot pencaran). Arah korelasi yang positif (positive correlation) ditunjukkan dengan kumpulan titik-titik yang membentuk pola linear naik ke atas kanan. Arah korelasi yang negatif (negative correlation) ditunjukkan dengan kumpulan titik-titik yang membentuk pola linear turun ke ke bawah kanan. Sementara tidak ada korelasi (no correlation) ditunjukkan dengan korelasi yang membentuk selain dua pola linear tersebut, seperti pola vertikal, pola horizontal, maupun pola yang lainnya. Kekuatan korelasi yang kuat (strong correlation) ditunjukkan dengan sekumpulan titik-titik yang saling berdekatan satu sama lain, sementara kekuatan korelasi yang lemah (weak correlation) ditunjukkan dengan sekumpulan titik-titik yang saling berjauhan satu sama lainnya.

Agar paham bagaimana cara menghitung korelasi antar variabel, berikut ini merupakan data mengenai permintaan suatu komoditi (satuan) dan harga rata-rata komoditi (satuan). Permintaan suatu komoditi didefinisikan sebagai variabel X dan harga rata-rata komoditi didefinisikan sebagai variabel Y. Data berikut sudah dihitung nilai X2, Y2, dan XY serta jumlah dari semua variabelnya.


No X
(Permintaan Suatu Komoditi)
Y
(Rata-Rata Harga Komoditi)
X^2 Y^2 XY
1 178 105 31684 11025 18690
2 224 105 50176 11025 23520
3 160 130 25600 16900 20800
4 315 130 99225 16900 40950
5 229 130 52441 16900 29770
6 250 150 62500 22500 37500
7 181 150 32761 22500 27150
8 306 170 93636 28900 52020
9 257 170 66049 28900 43690
10 300 180 90000 32400 54000
Jumlah 2400 1420 604072 207950 348090

Berdasarkan hasil tabel diatas diperoleh nilai:







Nilai-nilai tersebut dimasukkan ke formula korelasi Pearson product moment (korelasi linear sederhana) sebagai berikut:




Berdasarkan hasil perhitungan korelasi Pearson product moment diatas menunjukkan bahwa koefisien Korelasi antara permintaan suatu komoditi (X) dengan harga rata-rata komoditi (Y) sebesar 0.5477 dengan hubungan antara permintaan suatu komoditi dengan harga rata-rata komoditi memiliki tingkat hubungan yang menengah sehingga apabila ditambahkan permintaan suatu komoditi maka akan mempengaruhi peningkatan harga rata-rata suatu komoditi. Sebaliknya, apabila dikurangkan permintaan suatu komoditi maka akan mempengaruhi penurunan harga rata-rata suatu komoditi.

Ilustrasi lain dengan kasus yang sama (Kasus hubungan antara permintaan suatu komoditi (X) dengan harga rata-rata komoditi (Y) dengan nilai data yang berbeda, setelah dilakukan perhitungan hasil koefisien korelasinya menunjukkan nilai -0.8096, bagaimana interpretasinya? Hubungan antara permintaan suatu komoditi dengan harga rata-rata komoditi memiliki tingkat hubungan yang sangat kuat sehingga apabila ditambahkan permintaan suatu komoditi maka akan mempengaruhi penurunan harga rata-rata suatu komoditi. Sebaliknya, apabila dikurangkan permintaan suatu komoditi maka akan mempengaruhi peningkatan harga rata-rata suatu komoditi.

Demikian pengertian dan perhitungan korelasi Pearson product moment atau korelasi linear sederhana yang bisa saya sampaikan dalam blog ini. Semoga bermanfaat.
Ditulis oleh: Wahyu Dwi Lesmono DSMLMD Blog Diposting pukul: 9:15:00 am

2 comments :

  1. Boleh tau referensi Walpole (2004) lengkapnya apa? untuk keperluan penulisan tesis... tus

    ReplyDelete
    Replies
    1. Pendahuluan Pengantar Teori Peluang dan Statistika.

      Delete

Apabila ada komentar, pertanyaan, maupun tanggapan silahkan kirimkan komentar disini sesuai dengan postingan ini. Jika terdapat isi komentar yang tidak pantas sesuai dengan etika dalam berkomentar di blog, maka komentar tidak akan dipublis. Pertanyaan dan tanggapan akan segera dibalas.